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We consider several nonlinear effects, generated during stability breakdown of the 
formation process of discrete elements of a new phase (crystals, gas bubbles) in a 
metastable fluid. 

In metastable media, superheated fluids, and supersaturated solvents one often observes 
in phase transition processes regular periodic variations of temperature, pressure, two-phase 
system concentrations, and the mean size of heterogeneous inclusions. 

In many cases the principal formation mechanism of formation of self-oscillations is 
smoothed as follows. In a sufficiently fast system-transition into a metastable state a meta- 
stability level is reached in it, for which the nucleus formation process is sharply activated, 
and has a cascade-formation character. The latter is determined by the strongly nonlinear in- 
crease in formation rate of elements of the new phase With an increase in superheating, super- 
saturation, or supercooling. In this case the increase in new phase elements leads to a re- 
duction in the extent of metastability (for example, to a decrease in superheating due to heat 
extraction by growing bubbles). Following removal of heterogeneous inclusions from the bulk 
due to their floating or precipitation at the reservoir walls the extent of metastability in 
the combined elements of the new phase of the medium again increases under the effect of ex- 
ternal sources. The cycle described is further repeated. Similar self-oscillating regimes 
can be observed in processes of different nature, such as heating of a polydisperse fuel, as 
well as simultaneous flow of polymerization and crystallization when their thermal effects 
are commensurate. The applied value of investigating periodic heat- and mass-exchange proc- 
esses with phase and chemical transformations is determined by the necessity of developing ef- 
fective methods of controlling industrial crystallizers, thermal energy and cryogenic systems. 

Attention was paid in [1-4] to stability analysis of the equilibrium regimes of bulk 
crystal formation and the formation characteristics of the self-oscillating regimes. In the 
present study we consider the effect of parametric modulations on the characteristics of neu- 
tral stability and the nonlinear resonance effects related to them, formed by several control 
processes with nonstationary regimes by means of parametric oscillations. 

For definiteness we consider below crystallization from supersaturated solutions. The 
analysis provided can be extended without difficulty to crystallization of supercooled alloys 
or solutions. The solution parameters with a low relative content of crystals is assumed to 
be uniform within the limits of the considered sufficiently large volume, which corresponds 
to the hypothesis of ideal mixing of suspensions. To describe nucleus formation we use the 
results of stationary nucleation theory. The process is assumed to be isothermic. The mass 
balance equation of the crystallizing material and the kinetic equation for the distribution 
function of crystals over their radii r are written in the form: 
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Fig. i. Neutral stability surface trace 
in the plane of parameters G' R as a 
function of the parameter b for k = i. 

The boundary condition in (2) corresponds to equality of the effective flow of crystals of 
minimum size to the frequency of nucleus formation, which is assumed to be a known function 
of relative supersaturation and can be determined by the Frenkel--Zel'dovich theory 
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CO 

or by the phenomenologic Mayer kinetic 

J = C (c - -  Co) ~. 

In the kinetic equation (2)we neglect random fluctuations in the crystal growth rate dr/dr. 
Their account would lead to occurrence of diffusion along the r axis and corresponding terms 
in the equations and boundary conditions (2). The corresponding analysis was carried out in 
[4]. The parameter y characterizes the rate of crystal removal from the system. 

The crystal growth rate is determined in the general case by an expression of the fol- 
lowing type: 

7 = (3) 

It is convenient to introduce new variables 
r ' t 

u = ~ ,  S = ? o  ~ ,  ~ =  ?o dr, F ? /?o ,  ( 4 )  
Co ~s 

0 0 
where Yo are several characteristic values of the function y, and u s is the relative super- 
saturation corresponding to the stationary process. 

Neglecting the effect of initial conditions on the crystal distribution density during 
the evolution of the asymptotic phase of the process, we obtain in the variables (4) 

d[u('r--s)]'exp {'D~-i F(s--z)dz ) ( 5 )  
f (t, r) = F ('c, s) = ~ (s) [3 [u (~ - -  s)] [3 [u (~ - -  z) l"  " 

0 

Equation (5) was obtained in [3]. It is noted that, in principle, the parameter y, char- 
acterizing the time of finding crystals in the system, may depend on the distribution func- 
tion. Here we provide an expression for the crystal distribution function f(t, r) for the 
case y = y(r)fn: i 

[ fJ'[u('~--s)] + nfS~ ; (1)n(s--z),(s--z)dz ] ~. 
l (t, r) = F (% s) = * (s) S" [u ( ' r  s)l ~ I~ [u (~ - -  z)l ' 

0 

n = / : 0 ,  Fo �9 a/(4n+a)T4n/(4n+a) 
~0 d s  �9 

The last equation makes it possible to generalize all results obtained below for n = 0 to sit- 
uations in which the dependence of X on the crystal distribution is substantial. 
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Fig. 2. Comparison of theory and experiments [8] on 
characteristics of self-oscillations of the relative 
supersaturation u/u s and of the third moment of the 
distribution function m3/mS3 for growth of sodium 
chloride crystals for b = i, k = i, J = cum; a) R = 
0.21; G'/G~ -- i = 0.28; b) R = 0.32; G'/G~ -- i = 
0.026; c) R = 1.6; G'/G~ -- 1 = 0.89. 

Transforming the balance equation (i) by means of (5), we obtain a functional integro- 
differential equation, determining the evolution of relative supersaturation in the bulk of 
the crystallizer: 

i j 1 13 (u.._.._~) d_~_~. _ RQ (u) _+_ R~ (u) J [u ( T - -  s)l exp - -  ~8 r (s --. z) dz r 2 (s) ds _ O. 

~= d-c O (us) 11 J.& [u (~ - -  s)l I~ [u (-c-- z)l cl (s) 
o o 

The following new variables and parameters were introduced here: 

I - -  - -  R - -  - - ,  a = exp - - - ( r  (z) dz 
u= ' C0?oU~ o b �9 (s) 

(6) 

Based on the stationary analog of Eq. (6), it is easy to describe the stationary crystalliza- 
tion regimes by means of time-independent supersaturation. In this case the crystal distri- 
bution function over sizes acquires the form 

J__~ s 

f ( r ) - =  F ( s ) =  lD(s) exp {--.I F (z)dz}, (7) 
1~= o 

and the stationary supersaturation is determined by the relation 

4~p~ {' F ( s ) r 2 ( s ) d s .  (8) Q (.=) 
~'o . J ~ ( s )  " 

0 

The s t a t i o n a r y  reg ime  ( 7 ) ,  (8) i s  q u i t e  o f t e n  u n s t a b l e  w i t h  r e s p e c t  to  s m a l l  s u p e r s a t u r a t i o n  
f l u c t u a t i o n s  [2 ] .  To a n a l y z e  t he  s t a b i l i t y  of  reg ime (7 ) ,  (8) we assume p e r t u r b a t i o n s  ]$l << 1 
and, restricting ourselves to a linear transformation in $ in (6), we obtain the equation 

i $ d--"~ -1- RI ( B .  D) + f2 o o qb (s) -[- 

o cO (s) 
= 0, ( 9 )  

in which we introduce the parameters: 

D us dlnQ [ , B u= d l n ~  , G' .. d lnJ [  
. . . . .  K U s - - I  . 

du [u=u~ du u=u~ du ]u=u s 

(IO) 
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Fig. 3. Effect of parametric modulation on the conditions of violation 
of stability of stationary regimes for b = i, k = i: a) displacement 
of neutral stability curves during modulation of the parameter R: i) p = 
0, 2) p = 0.2, 3) p = 0.5; b) region of variation of the amplitude 
and frequency to of modulating the parameter u leading to destabili- 
zation (i), stabilization (3), not affecting the stability of station- 
ary regimes (2); c) displacement of neutral stability curves during mod- 
ulation of the parameter Y/Yo: i) ~ = 0, 2)6= 0.04, 3) ~ = 0.i; d) dis- 
placement of neutral stability curves during simultaneous modulation of 
the parameters R and 7/Yo: i) p, 8 = 0; 2) p = 0.05, (3 = 0.04; 3) p = 
0.3, 6 = 0 . i .  

Substituting into (9) a perturbation $ in the form 

= ~0e z~, (11) 

we obtain a complex equation for  the parameter X, not derived here due to i t s  awkwardness. 
The validity of representing ~ in the form (Ii) to Eq. (9) requires some justification. The 
matter is that the object of the classical linear stability theory is an ordinary differen- 
tial equation, which Eq. (9) is not. However, this equation can be reduced to an infinite 
autonomous system of linear differential equations for ~ and moment distribution functions of 
crystals over sizes [5]. For this system the representation (ii) is fully justified. This 
equation for Emakes it possible to write down relations for the neutral stability curve in 
the space of parameters G', R, B, D. For illustration, Fig. i shows the neutral stability 
curves G' = S(R, b) for the case 

�9 = r b'-l, ~ : ~@, ? = coast, Q - -  c o n s t  ( 1 2 )  

The instability is determined by the condition G' > S(R, b). Self-oscillating crystal- 
lization regimes are generated in the instability region. For small supercriticality G'/G'~-I 
these oscillations can be investigated by small parameter methods, similarly to the way it was 
done in [2-4]. The essence of this method consists of representing the relative supersatura- 
tion in the form of a Fourier series: 

it--us [1 q-  O ~ e x p i n o  , ~ _ ~ = ~ ,  
n - - - - 2  

O~ ~ ~ 0 " ~  = 0 1 r  1 = q. 

(13) 

Substituting expansion (13) into Eq. (7), in which the nonlinear terms must be expanded 
in a Taylor series up to third order of smallness in powers of ~, and analyzing the relations 
obtained, one can determine the amplitude q, the frequency m, and ~o = <~>. This method is 
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valid only for small supercriticality. However, the real system parameters often acquireval- 
ues, corresponding to close approach in the instability region, where the theory of small- 
amplitude self-oscillations is not valid. This creates the necessity of numerical solution 
of the nonlinear equation (6), which can be realized by the Aitken-Steffensen iteration method 
[6, 7]. As a result of the numerical analysis, characteristics of self-oscillations are ob- 
tained as a function of supercriticality. Self-oscillations of supersaturation are generated 
by periodic changes in the most important integral characteristics of the process -- the mean 
crystal radii, their bulk concentration, and the crystal output. This was fixed experiment- 
ally in many studies (see, for example, [8-11]). Figure 2 shows the results of comparing the 
calculated theoretical characteristics with experiments [8], for both small and large super- 
criticalities. It is easily seen that the mean saturation time decreases with increasing su- 
percriticality, while the crystal mass yield increases. This increase is quite substantial, 
and for a subcriticality (G'--G'o)/G'o ~ 1 it can reach 8-15%, in agreement with the experi- 
mental results of [8]. 

Along with the problems noted above of instability and self-oscillations an important 
problem is that of stabilization of unstable crystallization regimes. A promising means of 
its solution is the use of parametric modulation. To investigate the effect of kinetics-mod- 
ulation of crystal removal from the system and modulation of the removal rate of solution and 
crystals on the system behavior for mass removal kinetics, crystal growth, and their removal, 
described by relations (12), we put 

R = Roll --k pq~(x)], y -- yo[1 -t- &p (w)]. (14) 

Here ~(T) is a periodic function of time T. The determination of stability boundaries of the 
stationary crystallization regime reduces in this case to the search of periodic solutions of 
the linear equation (9) with coefficients (14), determining the evolution of perturbations of 
stationary supersaturation u s: 

3 

dE i s d~ -kR~ R~ ~(~--s) exp{--S--6f~('~---z)dz}sF'--~ds+ 
(~) o 

3 

Ro [1 § pqD (T)] 
if + , + + 

S-~ - 1  nL- .t" ~ (T --- Z) C~Z] exp t" q~ (T - -  Z) dz ds = O, [I + &p 0: - -  z)] I - -  s - -  ( 1 5 )  f~ (+) o o o 

where F(x) is the Euler Gamma-function, G is the Jacobi number J'us/Js, and 
S 3 ] 

( ' 0 =  ~ exp { - - s - - 8 , f  q ) ( ' r , - - z ) d z } s  t' ds. 
0 0 

To obtain qualitative information on the effect of modulation on stability, the analysis of 
Eq. (15) is conveniently started with the study of simplest dependences of O(T) [12]o In par- 
ticular, we use here a rectilinear stepwise modulation law, for which 

1, 2a__..._~n < T <  ~ ( 2 u +  1) , 
(.0 tO 

q~ ('~) = (16) 
- -1 ,  z~(2n--1) < ' v < - - 2 z ~ ,  

CO Ca) 

where n is an integer. 
law (16) is quite simple and easily realizable. 
terval [--v/m, z/m] is written in the form: 

The general solution of Eq. 
From the point of view of technological applications the modulation 

(15) on the in- 

Jl 
E1 = e- -~  ( C l  s in  1$,'~ -Jr- C= cos ~ 'c ) ,  - -  - -  < "~ < 0, 

(0 

~ = e - ~  (C~ s in  [~E~ + Cs cos [~Ec), 0 < "~ < ---~ . 
01 

The continuity conditions of the solutions (17) at the points-v/m, O, z/m have the form: 

(17) 

~ (o) = L (o), ~ (o) = ~ (o), 
(18) 
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Fig. 4. Effect of parametric modulation on self-oscillatlng 
crystallization regimes for b = i, k = i, J = cum: a, b) 
regions of harmonic, sub- and ultraharmonic capture of nat- 
ural frequency during modulation of the parameters R and 
7/70, ~o = 0.92; c) time-mean variation of the mass output 
(m3)* and of the crystal mean size (m,) I at forced oscilla- 
tions, compared to the mean mass output (m3) 2 and mean crys- 
tal size (ml) 2 in the self-oscillating regime with Ro = i, 
p = 0.2, ~ = 0, ~o = 0.92, G' = 6.65. 

where ~ is a real parameter, and the dot denotes differentiation with respect to time. The 
existence condition of a nontrivial solution of system (18) is equating to zero the corre- 
sponding characteristic determinant, leading to the equation 

~ (al - -  a,)2 d_ ~ + ~ sin ~lg sin ~ n  ch (aa --[- a,) C05 ~1~ COS . . . . .  ~ (19) 

The periodic solutions, corresponding to the new surface of neutral stability, are determined 
by the condition [~[ = i. Besides, in substituting solutions of form (17) into Eq. (15) a 
number of additional conditions is generated, relating the parameters ~i, ~2, 8,, 82. The sys- 
tem of nonlinear algebraic equations obtained was analyzed numerically along with (19). Fig- 
ure 3 shows the results of applying parametric modulation. The displacement of neutral sta- 
bility curves during modulation of the parameter R without modulation of yis illustrated in 
Fig. 3a; this modulation is the stabilizing factor for any parameters p and ~. For modula- 
tion of the kinetics of crystal removal there exist three regions of variation of the ampli- 
tude 6 and the frequency ~ with a qualitatively distinct effect on the stability of the sta- 
tionary regime (Fig. 3b). In the given case parametric modulation can lead to both stabili- 
zation and destabilization of the stationary regime. Besides, the system can seem generally 
unstable to modulation. The corresponding shift of neutral stability curves is shown in Fig. 
3c. 

Simultaneous modulation of R and y is not a result of their simple superposition; this 
is explained by the fact that these parameters appear in Eq. (16) nonllnearly. Thus, for ex- 
ample, if p is quite large, and 6 corresponds to an interval leading to partial destabiliza- 
tion, the total modulation can lead to stabilization on the whole interval of Ro values. If 
p and 6 are quite small, the basic contribution to variation of the qualitative stability pat- 
terns is provided by modulation of kinetics of crystal removal (Fig. 3d). We note that the 
results obtained here change only quantitatively during transition to a different form of per- 

iodic action. In particular, studies of harmonic modulation ~(~)=--sin ~ are subject to 
2 

all the conclusions formulated above. 

The presence of substantial nonlinearities in the system under consideration renders the 
use of parametric oscillations in the new instability regions quite effective as a control 
process. Since analytic methods of harmonic balance are quite well developed only for non- 
linear equations of the Van der Pol type [13], the analysis of parametric resonance as ap- 
plied to Eq. (6) was realized numerically. An effect of forcing of frequency of eigenos- 
cillations of external frequency was observed. For quite large modulation amplitude the 
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eigenfrequency is synchronized with the modulation frequency under the condition that these 
frequencies are close to each other. The forcing of oscillations also occurs when the eigen- 
frequency of self-oscillations is close to a frequency, which is larger or smaller by an in- 
teger times than the modulation frequency: 

] I 
~(~)  ~ n ~  (e), n - -  . . .  - -  , - - ,  1 ,  2 ,  3 ,  . . .  

3 2 

I n  t h i s  c a s e  t h e  e i g e n f r e q u e n c y  o f  f o r c i n g  o s c i l l a t i o n s ,  b e i n g  r e s p e c t i v e l y  l a r g e r  o r  s m a l l e r  
t h a n  an  i n t e g e r  t i m e s  t h e  m o d u l a t i o n  f r e q u e n c y ,  i s  t h e  s o - c a l l e d  s u b -  o r  u l t r a h a r m o n i c  f o r c -  
i ng  [14,  15 ] .  I n  F i g .  4a ,  b we show t h e  e x i s t e n c e  r e g i o n s  o f  t h e s e  t y p e s  o f  o s c i l l a t i o n s  f o r  
b o t h  t y p e s  o f  m o d u l a t i o n  i n  t h e  p l a n e  i n  wh ich  t h e  c o o r d i n a t e s  a r e  t h e  m o d u l a t i o n  a m p l i t u d e  
and f r e q u e n c y .  The r e s u l t s  o b t a i n e d  a l s o  i n d i c a t e  t h a t  t h e  e f f e c t s  c o n s i d e r e d  a r e  somewhat  
e n h a n c e d  w i t h  i n c r e a s i n g  p a r a m e t e r  B f r o m  1 to  2 and w i t h  i n c r e a s i n g  i n d e x  k i n  a power  d e -  
p e n d e n c e  o f  8 on s u p e r s a t u r a t i o n .  

P a r a m e t r i c  m o d u l a t i o n  a f f e c t s  t h e  i n t e g r a l  c h a r a c t e r i s t i c s  o f  t h e  p r o c e s s ;  more  p r e c i s e l y ,  
t h e r e  e x i s t s  a f r e q u e n c y  i n t e r v a l  o f  e x t e r n a l  a c t i o n  n e a r  t h e  n a t u r a l  f r e q u e n c y ,  i n  wh ich  
t h e r e  o c c u r s  an  e n h a n c e m e n t  o f  t h e  t i m e - m e a n  mass  o u t p u t  o f  c r y s t a l s  <m3(T)> by  s e v e r a l  p e r -  
c e n t s  i n  c o m p a r i s o n  w i t h  t h e  mass  o u t p u t  o b t a i n e d  d u r i n g  r e a l i z a t i o n  o f  t h e  p r o c e s s  i n  t h e  
s e l f - o s c i l l a t i n g  r e g i m e  ( F i g .  4 c ) .  The mean c r y s t a l  s i z e  <ml(~)>  i s  a l s o  enhanced  i n  t h i s  
c a s e .  

Thus ,  p a r a m e t r i c  m o d u l a t i o n  can  be  u s e d  b o t h  to  s u p p r e s s  u n d e s i r a b l e  i n s t a b i l i t i e s ,  and 
to  c r e a t e  c o n t r o l  o f  t h e  c r y s t a l l i z a t i o n  p r o c e s s .  

NOTATION 

A, C, and m, constants determining the nucleation kinetics; b, a parameter introduced in 
(3); c and Co, concentration and thermodynamically equilibrium concentration; CI-C4, param- 
eters introduced in(17); D and B, parameters introduced in (i0); f, size distribution func- 
tion of crystals; F, function introduced in (5); J and J', nucleation rate and its derivative; 
G, Gibbs number; G', a parameter introduced in (i0); G'o, the G' value on neutral stability 
curve; k, a parameter introduced in (3); mk, moment of the crystal distribution function over 
sizes of order k; r and r,, radius of the crystal and the critical nucleus radius; Ro, a pa- 
rameter introduced in (14); R and p, parameters introduced in (I0) and (14); q, squared am- 
plitude of the fundamental harmonic of the supersaturation disturbance; Q, mass flow of the 
substance dissolved into the system; s, a variable introduced in (4); t, time; u, dimension- 
less supersaturation; Us, stationary u value; ~i, a2, 81, 82, parameters introduced in (17); 
~, 8o, a function and a parameter introduced in (3); 8s, stationary value of the function 8; 
y, yo,kinetics of crystal removal from the system and its characteristic value; 6, a parame- 
ter introduced in (14); ~, parameter introduced in (ii); ~, a parameter introduced in (18); 
~, supersaturation disturbance; ~o, parameter introduced in (ii); p, crystal density; T, di- 
mensionless time; ~, function introduced in (14); ~, a function introduced in (3); ~n, ampli- 
tude of the n-th harmonic of the supersaturation disturbance; ~, frequency; no, frequency 
value at the neutral stability surface; ~, a parameter introduced in (6); the asterisk de- 
notes the complex conjugate; the angular brackets denote averaging over time; the subscript 
(i) refers to the natural frequency of self-oscillations; and (e) to the parametric modula- 
tion frequency. 
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NONSTATIONARY PROCESSES IN OPTICAL FIBER FORMATION. 

I. STABILITY OF THE DRAWING PROCESS 

V. N. Vasil'ev, G, N. Dul'nev, 
and V. D. Naumchik 

UDC 532.51:532.522 

The stability of quartz glass melt flow in the deformation domain is investigated in 
the linear hydrodynamic stabilityapproximation as a function of the velocity coeffi- 
cient, the drawing rate, and the temperature modes of optical fiber formation. 

One of the fundamental quality indices of an optical fiber is the constancy of its geo- 
metric dimensionsalong the length. Fluctuations of the lightguide diameter cause nonstation- 
ary processes during its formation, for instance, fluctuations of the melt viscosity in the 
deformation zone, small fluctuations of the feeding and drawing velocities, inhomogeneity of 
the ingot, etc. Since different perturbations are inevitably present in any real process of 
optical fiber fabrication, the sensitivity of the lightguide dimensions to small fluctuations 
in the drawing parameters near their stationary values is of great interest. Closely related 
to the problem of investigating the reaction of the optical fiber drawing process to external 
perturbing effects is the problem of its stability because it governs the domain of the param- 
eters where continuous fiber formation is possible. 

Instability of the process can be caused by two mechanisms: cohesion breakaway of the 
lightguide (the tensile stress exceeds its rupture strength), and hydrodynamic instability 
(small perturbations increase without limit in time and cause fracture of the liquid jet or a 
periodic change in the thickness of the fiber being formed appears, i.e., so-called drawing 
resonance is observed) The first fracture mechanism during the drawing of quartz lightguides 
is associated with underheating of the quartz glass melt, i.e., wlth too high a value of the 
viscous friction and is not examined here. 

Investigation of the stability of the fiber formation process was performed first for 
the case of drawing from a filler of a continuous polymeric or vitreous textile fiber in iso- 
thermal [l, 21] and nonisothermal conditions [3-5]. However, the application of these results 
directly to production of optical fiber is difficult (the isothermal model is too rough a 
generalization and mainly fiber drawing of polymers was examined in [3-5] and theenergy equa- 
tion being used cannot adequately describe the heat transfer process in lightguide produc- 
tion). The stability of optical fiber drawing was studied directly in [6-9] but the stabil- 
ity was investigated in [6-8] only within the framework of the hydrodynamic model. The ingot 
heating conditions were not examined here while the temperature distribution in the equations 
of motion was taken into account parametrically by giving the viscosity by a function of the 
longitudinal coordinate. The system of governing equations in [9] is actually borrowed com- 
pletely from [3, 5], therefore, the remark formulated above relative to [3, 5] also refers to 
[9]. Let us note that the dependence of the drawing stability on the temperature conditions 
for fiber formation is shown convincingly in [8, 9]. It follows from the survey presented 
that the drawing stability problem for optical lightguides is insufficiently investigated. 
For a correct solution of the problem posed the heat exchange process during fiber production 
must be examined more completely since it is apparently governing. 

i. Stability of the optical fiber drawing process is investigated in this paper within 
the framework of the linear theory of stability on the basis of a quasi-one-dimenslonal model 
[i0]. Fiber formation is considered under simple uniaxlal tension of a Newtonian fluid with 
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